
i
i

“Book” — 2016/9/2 — 9:39 — page 1 — #1 i
i

i
i

i
i

Modeling RESTful Web of Things
Services
Concepts and Tools

Christian Prehofer1,a,∗ and Ilias Gerostathopoulos∗
∗ Fakultät für Informatik, Software & Systems Engineering Research Group, Technische Universität München, Germany
a Corresponding: prehofer@fortiss.org

Abstract
In this chapter we consider tools and methodologies for the development of Web of Things
applications based on REST design principles. We discuss tools and methods for creat-
ing Web of Things services, in particular mashup tools as well as model-driven engineering
approaches. While mashup tools mainly focus on modeling the data flow and rapid devel-
opment, model-driven engineering approaches permit different views and more expressive
modeling concepts. We analyze both concepts and techniques regarding expressiveness,
suitability for the problem domain as well as ease of use and scalability. Then, we discuss
how mashup tools can be extended based on model-driven engineering concepts, while pre-
serving the advantages of simplicity and ease of use. In particular, we show how mashup
tools can be extended to more flexible, generic operations on sets of things, based on ad-
vanced modeling concepts.

Chapter points
• Mashup tools are widely available for creating Web of Things services in simple

and graphical way.
• Mashup tools can be compared to more expressive but also more complex model-

driven approaches, as both aim for high-level modeling of services.
• Mashup tools can be extended based on model-driven approaches, while preserv-

ing the advantages of simple service creation. This is shown for generic operations
on sets of things.

1. Introduction

The basic idea of the Internet of Things (IoT) vision is the pervasive presence of a
variety of things or objects — such as Radio-Frequency Identification (RFID) tags,
sensors, actuators, mobile phones, etc. — which are able to interact with each other
and cooperate to reach common goals [18, 1]. There is a growing interest in research
on new technologies and novel applications for the IoT, as well as in related areas

1fortiss, GmbH, Germany, prehofer@fortiss.org

c© Elsevier Ltd.
All rights reserved. 1

i
i

“Book” — 2016/9/2 — 9:39 — page 2 — #2 i
i

i
i

i
i

2 Modeling RESTful WoT Services - Concepts and Tools

Figure 0.1 Model of a plant monitoring application in Node-RED.

such as wireless sensor networks and ubiquitous and pervasive computing [46]. Web
of Things (WoT) builds on this momentum and aims at building an application layer
for the creation of IoT services. It builds on existing Web protocols, in order to allow
devices from multiple vendors to interoperate seamlessly.

In this chapter, we focus on methods and tools for the development of WoT sys-
tems. As WoT systems grow in functionality, size and management complexity, we
believe that a systematic software-engineering approach towards building WoT sys-
tems becomes highly relevant. We argue that such an approach needs to combine
lightweight data-flow-based IoT modeling tools, such as mashup tools, with more so-
phisticated model-driven engineering (MDE) methods and tools, such as UML-based
design tools. Following the WoT vision, it has to be built around well-known web
architectural styles that allow for resource discovery and API interoperability, such
as the REST style. Finally, the approach has to promote code reuse and cater for
both static settings and dynamic ones, where WoT devices operate in an opportunistic
fashion.

This chapter is based on earlier work towards such an integrated WoT development
approach (published in [44, 47, 45]). We first provide an overview of mashups, which
is a popular approach for application development in the WoT. There are several tools
implementing this concept, e.g. IBM Node-RED [26], glue.things [28], WotKit [4],
as well as Clickscript [20]. Such mashup tools allow for visual, interactive modeling
of the data flow between IoT devices and Web services and are well-suited for rapid
prototyping of WoT systems. As an example, Figure 0.1 depicts the model of a simple
plant monitoring application in Node-RED.

i
i

“Book” — 2016/9/2 — 9:39 — page 3 — #3 i
i

i
i

i
i

Modeling RESTful WoT Services 3

MDE methods and tools have also been proposed for the WoT/IoT, with ThingML
[16] being a prominent example among other proposals [49, 42, 43]. Although they
need more upfront effort in creating the involved models and setting up the underly-
ing infrastructure, MDE tools allow for more expressive modeling than mashup tools,
since they provide multiple views and diagrammatic notations (not just a single data
flow view). Following a classical MDE approach, models created in MDE tools can be
used to automatically generate code via a series of model-to-model and model-to-text
transformations. These models are also typically amenable to sophisticated verifi-
cation methods, both manual (e.g. model-based testing) and automatic (e.g. model
checking).

MDE methods and tools can be used in the WoT in the modeling of (i) RESTful
interfaces, and (ii) behavior of actuators. In case of large WoT systems with multiple
sensors and actuators, the RESTful interfaces of sensors and actuators become lengthy
and complex. A systematic model-driven approach to modeling and generating rich
RESTful interfaces for the discovery, reading and manipulation of resources for the
WoT is thus becoming important. At the same time, the behavior of actuators can be
naturally modeled by state machines; this is common practice in embedded systems
development.

Once WoT sensors and actuators are provided via RESTful interfaces, mashup
tools can be used to model the business logic of a WoT system. In this respect, a
limitation of mashup tools is that they require that all connections in the visual data
flows are statically defined. At the same time, similar connections cannot be grouped
together; there is no way e.g. to reuse the part of the business logic that switches on
a light in one room to repeat the same action in another room. Instead, each such
operation has to be modeled explicitly in a mashup tool.

To address this limitation, we propose the concept of generic mashup operations.
In particular, we propose the extension of mashup modeling with 1 : n relations, which
models a set of resources in a concise way. Having this in place, we can use RESTful
operations to sense and actuate a whole set of resources at the same time. This provides
the necessary flexibility to work with dynamic scenarios, where new resources are
added to a set and are automatically considered in collective sensing and actuating. At
the same time, it lifts the necessity to model identical operations explicitly, thus leads
to more natural and easy-to-use programming abstractions.

The rest of the chapter is structured as follows. Section 2 provides the basic back-
ground and definitions of REST architectural style and WoT mashups. Section 3 pro-
vides an overview mashup tools and details on three predominant tools. Section 4
provides a more general account on MDE methods and tools for WoT, while Sec-
tion 5 compares them to the mashup tools. Section 6 explains how to model WoT
applications comprised of RESTful services. Section 7 extends the RESTful WoT de-
velopment by proposing generic mashup operations. Finally, Section 8 summarizes

i
i

“Book” — 2016/9/2 — 9:39 — page 4 — #4 i
i

i
i

i
i

4 Modeling RESTful WoT Services - Concepts and Tools

the important points of our integrated approach for WoT development.

2. Background
2.1. RESTful design
The REST architectural style is aligned with the concepts used in the HTTP protocol;
the work by Roy Fielding has shaped the concepts of RESTful design [15]. Following
[37], the main ingredients of RESTful design are as follows:
• Identification of resources via Uniform Resource Identifiers (URI). These are hier-

archically structured and each resource must have at least one URI.
• Uniform interfaces to read and manipulate the resources. These are the four basic

HTTP operations GET, POST, PUT and DELETE. Other operations, e.g. HEAD
and OPTIONS, deal with metadata.

• Self-descriptive messages. Representation of the resources can be accessed in dif-
ferent formats, e.g. HTML, JSON or XML. The messages, both requests and reply,
contain the complete context and are self-descriptive in this sense.

• Stateless interactions, i.e. the server does not maintain session state on the interac-
tions with the clients. This means that all information to fulfill a request is included
in the HTTP request, i.e. the resource name and message.

2.2. Mashups and Mashup tools
A mashup is a composite application that integrates two or more existing components
available on the web. These components can either be data, application logic, or user
interfaces. The individual components are called “mashup component”; the gluing
mechanism is called “mashup logic”. The mashup logic is the internal logic which
defines how a mashup operates or how the mashup components have been orches-
trated [38]. It specifies which components are selected, the control flow, the data flow
and data mediation as well as data transformation between different components [12].

Composition of a mashup extensively deals with the kind of components that make
it up. The application stack has been broadly classified into data, logic, and presen-
tation (user interface) layer. The mashup created accordingly is called either a data,
logic, or user interface mashup.

Mashup components are the building blocks of a mashup. In practice, several tech-
nologies and standards are used in the development of mashup components. Simple
Object Access Protocol (SOAP) web services [50], RESTful web services, Javascript
APIs, Really Simple Syndication (RSS) [29], Comma-Separated Values (CSV) [57]
etc. are some of the prominent ones. Depending on their functionality the mashup
components have been broadly classified into three categories (Figure 0.2):
1. Data components provide access to data. They can be static like RSS feeds or

dynamic like web services which can be queried with inputs.

i
i

“Book” — 2016/9/2 — 9:39 — page 5 — #5 i
i

i
i

i
i

Modeling RESTful WoT Services 5

Mashup
Components

Logic Data User Interface

SOAP Web
Services
RESTful Web
Services
JavaScript
APIs

RSS

Atom

XML, JSON,
CSV
Web Data Ex-
traction

Code Snip-
pets

Widgets
UI Compo-
nent Extrac-
tion

Figure 0.2 Classification of Mashup Components, following [12]

2. Logic components provide access to functionality in the form of reusable algo-
rithms to achieve specific functions.

3. User interface components provide standard component technologies for easy reuse
and integration of user interfaces pieces fetched from third-party Web applications
with in the existing user interface of the mashup application.
Mashup tools have been proposed as a simple way to develop mashups. This was

supported by uniform communication protocols and APIs based on REST principles.
Early mashup tools are Microsoft Popfly and Yahoo Pipes; for an overview we refer
to [24]. In recent years, there has been a lot of interest in applying the same ideas to
the IoT/WoT, also building on REST interfaces [5, 39, 19].

According to [30], mashup tools typically include data mediation. This involves
converting, transforming, and combining the data elements from one or multiple ser-
vices to meet the needs of the operations of another.

For connecting services, there are different concepts as discussed in [59]. The
main, predominant one is modelling data flow. For others, mainly in the enterprise
area, also centralized approaches with processing rules are considered. For commu-
nication, asynchronous messages are used, e.g. using REST-style communication. In
general, orchestration can be described by data flow and/or workflow, or through a
publish-subscribe model [59].

IoT/WoT mashup tools typically provide a graphical editor for the composition of
services for one application. This models the message flow between the components.
Components can be sensor nodes, processing or aggregation entities as well as external
web-based services. Thus, mashup tools can also be seen as specific cases of end-user
programming [58] but are however limited to the specific model of describing message
flow. In addition, some mashup tools provide simulation tools and also interoperability

i
i

“Book” — 2016/9/2 — 9:39 — page 6 — #6 i
i

i
i

i
i

6 Modeling RESTful WoT Services - Concepts and Tools

for messaging between different platforms.

3. State of the Art in Mashup Tools

In this section, we detail on the most prominent mashup tools available in the market.

3.1. Node-RED
Node-RED1 is an open-source mashup tool developed by IBM and released under
Apache 2 license [26]. It is based on the server side JavaScript platform framework
Node.js2 (that is why the “Node” in its name). It uses an event-driven, non-blocking
I/O model suited to data-intensive, real-time applications that run across distributed
devices.

Node-RED provides a GUI where users drag-and-drop blocks that represent com-
ponents of a larger system which can either be devices, software platforms or web
services that are to be connected. These blocks are called nodes. A node is a visual
representation of a block of JavaScript code designed to carry out a specific task. Addi-
tional blocks (nodes) can be placed in between these components to represent software
functions that manipulate and transform the data during its passage [22]. Two nodes
can be wired together by connecting the output port of a node to the input port of the
other node. After connecting many such nodes, the finished visual diagram is called a
flow. An example of a flow is depicted in Figure 0.1.

IoT solutions often need to wire different hardware devices, APIs, online web ser-
vices in interesting ways. The amount of boilerplate code that the developer has to
write to wire such different systems, e.g. to access the temperature data from a sensor
connected to a device’s serial port or to manage authentications using OAuth [11], is
typically large. In contrast, to use a serial port using Node-RED, all a developer has to
do is to drag on a node and specify the serial port details. Hence, with Node-RED the
time and effort spent on writing boilerplate code is greatly reduced, and the developer
can focus on the business parts of the application.

Node-RED flows are represented in JSON and can be serialized, in order to e.g.
be imported anew to Node-RED or shared online. There is a new concept of “sub-
flows” that is being introduced into the world of Node-RED. Sub-flows allow creating
composite nodes encompassing complex logic represented by internal data flows.

Since in Node-RED nodes are blocks of JavaScript code, it is—technically—possible
to wrap any kind of functionality and encapsulate that as a node in the platform. In-
deed, new nodes for interacting with new hardware, software and web services are
constantly being added, making Node-RED a very rich and easily extensible system.

1http://nodered.org/
2https://nodejs.org/

http://nodered.org/
https://nodejs.org/

i
i

“Book” — 2016/9/2 — 9:39 — page 7 — #7 i
i

i
i

i
i

Modeling RESTful WoT Services 7

Lastly, the learning curve to develop a new node for the platform is low for Node.js
developers since a node is simply an encapsulation of Node.js code.

To make a device or a service compatible with Node-RED, a native Node.js library
capable to talk to the particular device or service is required. However, with the grow-
ing acceptance of REST style in Web and IoT systems, more and more devices and
services provide RESTful APIs that can be readily used from Node-RED.

3.2. glue.things
The objective of glue.things3 is to build a hub for rapid development of IoT applica-
tions [28]. It heavily employs open source technologies for easy device integration,
service composition and deployment [28]. TVs, phones, and various other home/busi-
ness tools can be hooked up to this platform through a wide range of protocols like
Message Queue Telemetry Transport (MQTT) [54], Constrained Application Protocol
(CoAP) [54] or REST APIs over HTTP.

The development of mashup applications in glue.things goes through the following
three main stages [28]:

Firstly, the devices are connected to the platform to make them web accessible
using protocols like MQTT, CoAP or HTTP/TCP etc. Device registration and man-
agement is handled by the extensible “Smart Object Manager” layer in the glue.things
architecture (Figure 0.3). REST APIs provide communication capabilities and JSON
data model is used for propagating device updates. These facilities are leveraged using
the client libraries or, for a more intuitive experience of device addition, the web-based
dashboard can be used. The dashboard also features several templates for connecting
devices and simplifying the tasks for the developer.

The second stage deals with creation of mashups. The glue.things system uses
a version of Node-RED that has been enhanced to support multi-users, sessions and
automatic detection and listing of new registered devices. External web services like
Twitter, Foursquare etc. can also be used during mashup composition. The “Smart
Object Composer” layer in the glue.things architecture houses the mashup tool. This
layer also has a virtualized device container for managing the registered devices.

Lastly, the created mashups are deployed as Node-RED applications including var-
ious triggers, actions and authorization settings. These deployed mashup applications
are accessible by REST APIs to the developers who may want to use them in their
own custom web applications. To the normal end users, they can be browsed through
a collection of mashup applications which can be used after suitable alterations to
the connection settings and other environment-specific values. Sharing and trading
of these mashup applications is also supported by the platform. This functionality is

3http://www.gluethings.com/

http://www.gluethings.com/

i
i

“Book” — 2016/9/2 — 9:39 — page 8 — #8 i
i

i
i

i
i

8 Modeling RESTful WoT Services - Concepts and Tools

reflected in the “Smart Object Marketplace” layer in the architecture.

Smart	Object	Manager
- Device	registration	and	management

Smart	Object	Composer
- Mashup	tool	for	data	aggregation	and	

manipulation

Smart	Object	Marketplace
Sharing,	distribution	&	trading	of	glue.things applications

- REST	API	for	developers
- Apps	for	end-users

D1 D1 D1 D1 D1 IoT devices

Service layer

Figure 0.3 glue.things Architecture [28].

3.3. WoTKit
WoT aims to leverage web protocols and technologies to facilitate rapid construc-
tion of web applications exploiting real world objects [4]. WoTKit4 is a lightweight
mashup toolkit and platform that provides a simple way for end-users to find, control,
visualize and share data from a variety of things [6]. WoTKit aims for:
1. Easy integration of physical devices, virtual devices and the toolkit.
2. Easy visualization of data collected from different devices.
3. Smart and efficient information processing capability for converting low level data

collected from devices to high level sensible data to be used in mashups.
4. Ability to quickly combine different data streams and apply various transforma-

tions, triggers i.e. easy service composition or mashup creation.
5. Easy sharing of created mashups and accessibility of features via APIs.

For quick visualization of data collected from different devices, WoTKit uses a
JavaScript-based dashboard, which supports the creation of user-defined widgets. Ev-
ery widget holds some specific set of data collected from devices and an associated
visualization. The system comes with visualization plugins like Flot5; more visualiza-

4http://hub.urbanopus.net/wotkit/
5Flot : Attractive JavaScript plotting for jQuery. http://www.flotcharts.org

http://hub.urbanopus.net/wotkit/
http://www.flotcharts.org

i
i

“Book” — 2016/9/2 — 9:39 — page 9 — #9 i
i

i
i

i
i

Modeling RESTful WoT Services 9

tion plugins can be hooked up into the dashboard at run-time.
WoTKit also contains an event-based data processing subsystem that processes

the low-level data collected from devices and converts them into more sensible high-
level data before they are fed into the system. It also features a visual programming
environment(mashup tool) for mashing up different data sets. This is similar to the
data flow model adopted by Yahoo Pipes. The mashup created using this environment
is basically a pipe which consists of connected modules to generate new data from the
input data sets. A pipe created is analogous to a flow created in Node-RED.

The toolkit supports end-user scripting to create new custom modules using Python
and sharing of created pipes and devices registered in the system. It provides a REST-
ful API for interacting with the registered devices, thereby facilitating easy creation
and integration of applications.

Figure 0.4 WoTkit Architecture [6]

The high level architecture of WoTKit is depicted in Figure 0.4. WoTKit is es-
sentially a Java based web application developed with the Spring Framework. The
“UI” part provides the dashboard to interact with the system components graphically
while the “RESTful Platform API” provides access to the created mashup applications
and registered devices in the system (which obtain unique APIs). The “Thing/Sensor
Storage” is the repository containing all the registered devices while the data fetched
from devices and pushed into the system are stored in the “Time-indexed Sensor Data
Storage”. The data model consists of sensors and sensor data having a unique time-

i
i

“Book” — 2016/9/2 — 9:39 — page 10 — #10 i
i

i
i

i
i

10 Modeling RESTful WoT Services - Concepts and Tools

stamp attached to it. The “Message Broker” is used to deliver data between different
components and has been implemented with the Apache ActiveMQ message broker 6.

3.4. Other Prominent IoT/WoT Tools
Paraimpu7 is a web-based platform which allows to add, use, share and interconnect
real HTTP-enabled smart objects and “virtual” things like services on the Web and
social networks [40]. User can easily create IoT applications to facilitate their devices
to react to environmental changes and activities [28]. To have a unifying view on dif-
ferent devices, these devices are segregated based on their functionality. “Sensors” are
devices/services capable of producing data in an acceptable format while “Actuators”
are entities that can consume data and in the process of consumption generate some
actions. Sensors and actuators communicate using the HTTP protocol and therefore it
is easy to create hybrid mashups.

ThingWorx8 platform aims to build and run applications for the IoT landscape
using a so-called model-driven approach [13]. It composes services, applications and
sensors as data sources and interconnects these through a virtual bus. The frame-
work supports a wide range of connection protocols for devices like CoAP, MQTT,
REST/HTTP and Web Sockets. It can integrate with other cloud providers such as
Xively and web services such as Twitter, Facebook or various weather services as data
sources. Once data sources are connected to dashboards, they can be used for data
gathering and monitoring and can be mashed up to create mashup applications. The
data can also be subjected to analytics.

3.5. Features and Limitations
The mashup tools and platforms for IoT landscape have been described in Sections 3.1-
3.4 from a very high level with their key features. One of the common objective of
these mashup tools is to reduce the development time of applications for the IoT land-
scape. All these mashup tools are cloud based i.e. they provide the hosting platforms
and application API for interacting between devices from applications running in the
cloud. This is especially good for business platforms where a centralized applica-
tion’s presence is highly sought [13]. For example in a large scale factory, installing
temperature sensors, gathering and analyzing data from them manually is tedious.
But if there is a centralized IoT platform offering device registration and management
services then implementation and maintenance of an IoT scenario becomes relatively
easy. The administrator need not remember the physical address of all the innumerable
temperature sensors scattered throughout the factory, instead just login to the central-

6The Apache ActiveMQ Message Broker : http://activemq.apache.org/
7https://www.paraimpu.com/
8https://www.thingworx.com/

http://activemq.apache.org/
https://www.paraimpu.com/
https://www.thingworx.com/

i
i

“Book” — 2016/9/2 — 9:39 — page 11 — #11 i
i

i
i

i
i

Modeling RESTful WoT Services 11

ized platform to look how the devices are functioning, select some devices to check
their data and even name the devices for easy reference and remembrance.

Although the mashup tools vary in degree to which they strive to ease the develop-
ment process but nevertheless the underlying concepts they adopt is the same. Almost
all tools, e.g. WoTKit or Node-RED rely on the concepts of data flow for developing an
IoT application. Different data streams from different devices are connected in a log-
ical way and data transformation is applied during the transit of the data. ThingWorx
advertises to heavily rely on model-based software development approach for creating
IoT applications but nevertheless we believe that the underlying concepts used and
features offered by the platform largely correspondent to other existing platforms.

Mashup
Deploy-

ment

Run Mashups in Mashup run time
environment, share, REST access

Mashup
Creation

Visual Programming environ-
ment to combine different services

Device
Man-

agement
Register IoT devices to the platform

Figure 0.5 Conceptualization of Features Available in Mashup Tools

After careful observation of many exiting tool-kits, it is appropriate to say that
they use different terminologies to denote similar concepts. Mashups are known by
different names in different tool-kits but in essence they reflect the same conceptual
approach. For example in Node-RED a mashup is called as a flow while in WoTKit
it is called a process. The created mashups are generally deployed in a mashup run-
time environment. Here the name of the run-time environment differs. For example
it is called “Smart Object Marketplace” in glue.things while “RESTful Platform API
module” in WoTKit. The commonality among these mashup run-time environments is
that all the mashup applications deployed can be shared online and accessed by REST
APIs.

Figure 0.5 summarizes the essential features provided by these tool-kits under the
banner of different terminologies. Difference arises in the features provided by these
tool-kits in these three distinct layers of service. For example in “Device Manage-
ment”, the protocols supported by a toolkit with which we can connect and register

i
i

“Book” — 2016/9/2 — 9:39 — page 12 — #12 i
i

i
i

i
i

12 Modeling RESTful WoT Services - Concepts and Tools

IoT devices vary. Almost all the tool-kits support common protocols like MQTT and
CoAP. But glue.things also has support for extra protocols like PubNub (Real time
publish/subscribe messaging API for web and mobile apps), Meshblu (Machine to
machine instant messaging network and API) etc. Similarly, in “Mashup Creation”,
Node RED permits the user to embed JavaScript codes while WoTKit has support
for Python scripting. In “Mashup Deployment” almost all tool-kits provide the same
features which include sharing of created applications and accessing them by REST
APIs.

It is interesting to mention a difference between IBM Node-RED and other tools
described in this Section: Node RED is just a visual programming environment and
not a complete platform by itself. For instance it does not provide a device manage-
ment layer, so we cannot explicitly register IoT devices to it but it supports a wide
range of connection protocols enabling it to communicate to different devices. This
limitation is eliminated in glue.things which is a platform in itself. It provides support
for device registration and management and uses an improved version of Node RED
as its mashup tool i.e Node RED is embedded with in this tool to provide a complete
IoT platform functionality.

4. Model-Driven Engineering for WoT

There is a broad range of model-driven engineering (MDE) approaches, especially
including domain specific modeling languages. Here, we mainly assume general-
purpose modeling languages like UML, even though many more specific approaches
exist. For instance, there are several proposals for MDE approaches for developing
IoT/WoT applications, e.g. the ThingML language [16].

The motivation for model-driven engineering is to describe a system on a higher
level of abstraction. This can be done in UML and other languages by diagrams mod-
eling specific aspects or views of a system. Typical in our setting are architecture
models and state machines.

Architecture models may describe the logical role of classes by class diagrams,
or the logical role of components by component diagrams. Furthermore, deployment
diagrams are used to show the mapping of (software) components to physical entities
(hardware).

Behavior is typically described by examples in sequence diagrams, or by state ma-
chines and activity diagrams. Activity diagrams describe the data and event flow,
similar to models used in mashup tools. State diagrams are used in many embedded
domains to model the behavior of specific objects. Also, state diagrams can be ana-
lyzed and verified formally (see e.g. [43]) and code can be generated automatically. In
this way, it is also possible to generate code for different platforms, even though this
still requires to consider the different platform APIs.

i
i

“Book” — 2016/9/2 — 9:39 — page 13 — #13 i
i

i
i

i
i

Modeling RESTful WoT Services 13

MDE development includes the following steps:
1. Model and design the application in device-independent model, here state (transi-

tion) diagrams and architecture models (not shown).
2. Code generation and compilation to device-specific, native code.

An advantage of MDE tools is that there is considerable work on semantics, which
means that common understanding of diagrams is formally defined. While there are
challenges in semantics for the full-featured UML [9], there exist subsets of UML
which are semantically well understood [17].

On the down side, the indirection layer created by separating logical and deploy-
ment models, together with the upfront effort to set up model-to-model transformations
and code generation scripts, renders MDE tools a heavyweight solution compared to
mashup tools (for a detailed comparison see Section 5). .

Ort, 2012-10-23Name des Vortrags © fortiss GmbH3

Sensor data Tweet

Sensors

Arduino

Figure 0.6 Component diagram.

Consider again the Node-RED example of Figure 0.1. In UML, we can model the
logical structure of such a scenario with the component diagram of Figure 0.6. Here,
each involved component—physical or logical—is represented by a box. Boxes are
connected through channels with usual required and provided semantics. In our case,
sensors and the Arduino board—gathered in the same component—produce temper-
ature data, that are used by Node-RED for internal computation. In turn, Node-RED
produces tweets, used as principal input by the Twitter component.

While the component diagram models the overall logical structure of our system,
the activity diagram (Figure 0.7) captures the data flow. In our scenario, the data
coming from sensors is collected by the Arduino controller and is then sent to Node-
RED. Node-RED in turn will produce a corresponding tweet published on Twitter,
based on the received value.

In these diagrams, we can already note an important aspect: mashup models (e.g.
the Node-RED model in Figure 0.1) essentially correspond to activity diagrams in
MDE terms, since they capture the data flow between components.

Finally, the discrete behavior of each diagram’s component is usually defined in
MDE through state machines. For example, the behavior of the Node-RED com-

i
i

“Book” — 2016/9/2 — 9:39 — page 14 — #14 i
i

i
i

i
i

14 Modeling RESTful WoT Services - Concepts and Tools

Ort, 2012-10-23Name des Vortrags © fortiss GmbH4

Arduino Controller

Sensors

Sensor data Sensor data

dioneWaterLevel < 5

5 < dioneWaterLevel <=15

@alberserra –

WARING! Your

dione needs water

NOW!

@alberserra –

WARNING! Your

dione water level is

too low.

Figure 0.7 Activity diagram.

ponent (center component in Figure 0.6) could be defined as in Figure 0.8. In Fig-
ure 0.8, WL(X) is an event that, when detected—i.e. we have new input data from
sensors—entails the instantiation of X with the current water level and enables the
two transitions—labeled with guard/action—to be, eventually, triggered.

Ort, 2012-10-23Name des Vortrags © fortiss GmbH5

Water Level

Distinction

 [X<5] WL(X) /

Twitter(„WARNING Your dione needs water NOW!“)

[5 < X <= 15] WL(X) /

Twitter(„WARNING Your dione water Level is too low.“)

Figure 0.8 State machine for the Node-RED component.

5. Comparing Mashup and Model-Driven Engineering Approaches

When comparing MDE and mashup tools for modeling WoT systems, we need to
realize that MDE approaches have a much wider set of modeling techniques and a
much more detailed separation of different views and concerns. Thus, we take mashup
concepts as the basis and discuss how this fits in the MDE world.

i
i

“Book” — 2016/9/2 — 9:39 — page 15 — #15 i
i

i
i

i
i

Modeling RESTful WoT Services 15

5.1. Execution and Modeling
As mentioned in Section 4, MDE approaches distinguish between (logical) objects
and components and between the deployments of components. Components have well
defined interfaces and ports, thus matching the notion of components found in mashup
tools. The main motivation in MDE is to describe the system from different perspec-
tives. For some models, in particular state machines, execution is possible. On the
other hand, consistency between modeling perspectives can be an issue [53].

In contrast, mashup tools essentially define the data/message flow between com-
ponents. As all data flows are described in one diagram, this also describes the system
architecture by showing the connected components in the work flow. Thus, mashup
tools integrate a component model with a deployment model. This is the first main
difference to MDE approaches. Separating deployment from logical components in
MDE creates a layer of indirection and makes prototyping less immediate, compared
to mashup tools. In these, it is very easy to develop concrete systems. On the other
hand, in a realistic development, applications often need to be mapped to different tar-
get deployments. For instance, in ThingML, so-called “configurations” map a logical
model to a specific deployment.

Secondly, since mashup tools define a data/message flow between components,
they resemble UML activity diagrams, where events are also exchanged. Activity
diagrams have a semantics based on events, which drive the control flow. According
to [36], there are synchronous and asynchronous semantics for control flow in activity
diagrams. In almost all mashup tools, the exchanged messages are asynchronous.
However, most mashup tools do not describe semantics formally.

A third difference is that components in mashup tools are either black-box en-
tities or need to be programmed in a general-purpose programming language, e.g.
Javascript, C, or Java. In contrast, modeling tools provide rich concepts to model the
behavior of components. A widely used approach for developing embedded systems
is to use state machines, which are also found in ThingML. From these, it is possible
to generate native code for different platforms, hence avoiding execution environments
for Javascript or similar languages.

5.2. Expressiveness and Reflecting the Problem-Domain
When using abstractions, as done in MDE and mashup tools, a main question is what
can be expressed and whether this reflects the modeled domain in a natural way. This
is essential to ensure user acceptance and long-term success of a tool.

Regarding our problem domain, mashup tools model the data flow between sen-
sors, actuators and services. The behavior of the services however needs to be spec-
ified in some other programming language, often Javascript. In MDE approaches for
IoT/WoT [16], state machines and statecharts [21] are often used for modeling the be-

i
i

“Book” — 2016/9/2 — 9:39 — page 16 — #16 i
i

i
i

i
i

16 Modeling RESTful WoT Services - Concepts and Tools

havior of individual components as they naturally represent (logical) states of sensors
and actuators. WoT modeling and development would clearly benefit by the integra-
tion of data flow modeling at the level of the system with state-based modeling at the
level of individual components. This goes to the direction of multi-paradigm model-
ing [2], a concept already in use in the embedded domain in tools such as SCADE [3].

We should note that general-purpose modeling languages can be complex and, at
the same time, are not ideally tailored to some specific domain. This is the reason for
the considerable research on domain-specific modeling languages (DSML) [53, 32],
which focus on capturing the important aspects of a particular domain in the domain’s
idiom and abstraction level. Following this, we can see the modeling language used
in a mashup tool as a DSML, since it provides the constructs needed to express the
important elements of the mashups domain, i.e. the connections between device APIs
and services and the data flow in the system. The syntax of such a graphical DSML
provides the rules on how nodes can be connected with each other; the semantics pro-
vides the meaning of having the nodes and their connections in the data flow. For
instance, in Node-RED, connecting the right side of a function node to the left side of
a Twitter node is allowed and means that the output of the particular function will be
tweeted. Viewed as DSMLs, mashups tools share both their benefits, i.e. expressive-
ness and involvement of domain experts, and limitations, mainly related to the need to
learn and maintain yet another language.

Another question is the separation of platform-dependent from platform-independent
code and other artifacts. MDE has taken considerable effort to separate platform
specifics, e.g. deployment or low-level APIs from higher-level models. The main
motivation is to produce application models that can be reused in generating code for
different deployment environments (thus reducing costs by speeding up development).
In some mashup tools, such separation is already in place, as there are separate map-
pings of logical nodes to physical ones (e.g. WoTKit [4]). On the other hand, some
approaches exclusively focus on specific target platforms, e.g. Arduino. Note that this
gives a very natural view on the target platform, but not as such on the problem domain
and makes the code non-portable.

Another aspect is the modeling of concurrent behavior. In MDE approaches, we
can model concurrent behavior in different ways, e.g. by different, parallel areas in an
activity diagram or by parallel state machines. As an example, consider a controller
for two lights: In this case, we can easily use two parallel state machines, one for each
light. For mashup tools, concurrency is not explicitly specified; it is only assumed that
asynchronous events are processed in proper order.

i
i

“Book” — 2016/9/2 — 9:39 — page 17 — #17 i
i

i
i

i
i

Modeling RESTful WoT Services 17

5.3. Tool Support and Ease of Use
An important factor for both kinds of approaches is the tool support. While mashup ap-
proaches essentially have been tool-based from the very beginning, MDE approaches
have a waste body of standards [36] and formal background and often tools imple-
ment only specific versions or subsets. Furthermore, mashup tools typically provide a
rich integration with existing services (sensors, web services), as well as deployment
platforms, from the very beginning.

This is a major difference to MDE approaches, which typically start from the mod-
els as such. There are many commercial tools for specific domains, especially for
embedded systems. There is however considerable less tool support for the WoT/IoT
domain. Regarding this, the work in [53, 56] states that “current MDE technologies
are often demonstrated using well-known scenarios that consider the MDE infrastruc-
ture to be already in place. If developers need to develop their own infrastructure
because existing tools are insufficient, they will encounter a number of challenges”.

As a result, the complex MDE infrastructure that allows for model manipulation
(merging, transformations), graphical editing of models and code generation is more
flexible but also requires more effort to both set up and operate w.r.t. mashup tools.

5.4. Scalability and Runtime Adaptation
We consider scalability in terms of size of models. Generally, visual tools have is-
sues when the views become very big. Then, abstraction or hierarchy concepts are
needed. This is an issue for both approaches, as discussed in [53]. For modeling,
some concepts for abstractions exist (e.g. hierarchical state machines).

Orthogonal to the scalability, adaptation should also be considered, i.e. the need
for the models (e.g. data flow or behavior model) to be adapted at run-time. For
instance, a new sensor or service may have to be added. Note that both kinds of tools
thrive on presenting a static view of the system, i.e. a view that is invariant during
execution. If systems are very dynamic, both MDE and mashup tools cannot properly
represent the system anymore. In MDE, there are several approaches addressing this
issue, e.g. models at run-time [33, 7] as well as more generic and flexible modeling
concepts [34].

5.5. Summary
Table 0.1 summarizes this section by providing a condensed view of the similarities
and differences between mashups and MDE approaches for WoT.

6. Modeling of RESTful Services

MDE methods and tools should be combined with mashup tools and concepts for an
integrated development of WoT systems. In this section and in Section 7 we consider

i
i

“Book” — 2016/9/2 — 9:39 — page 18 — #18 i
i

i
i

i
i

18 Modeling RESTful WoT Services - Concepts and Tools

Mashups MDE approaches

Execution
Mostly asynchronous
messages; no formal
execution semantics

Synchronous & asyn-
chronous messages; formal
semantics

Modeling Data/message flow diagrams
Architecture, deployment,
state & activity diagrams

Expressiveness
Data/message flow;
externalized specification of
service behavior

Specification of both logical/-
physical structure and service
behavior

Reflecting the
Problem-Domain

Intuitive modeling of data
flow between WoT sensors,
actuators and services

Domain-specific modeling
languages for WoT (e.g.
ThingML)

Tool Support
Dedicated mashup tools for
WoT (e.g. NodeRED,
WoTKit)

Sophisticated tool chains
with considerable configura-
tion effort, often only subsets
of standards supported in
tools

Ease of Use
Low effort of setting up
mashup tools, intuitive
graphical editing available

High effort of setting up and
working with tool chains

Scalability
Issues in representing large
models

Issues in representing large
models; some concepts for
abstraction (e.g. hierarchical
state machines)

Runtime
Adaptation

No tools to capture dynamic
views

Some approaches exist e.g.
models at runtime

Table 0.1 Summary of comparison between mashups and MDE approaches in WoT.

such a combination on the basis of RESTful design of WoT systems.
For Internet applications the paradigm of RESTful interfaces is now widely used

[48], because it provides a consistent, scalable and flexible model for a large variety of
interfaces. We aim to generate RESTful interfaces for WoT systems with sensors and
actuators in a systematic and automatic way. This is motivated by the following two
observations.

First, interfaces for larger WoT systems with multiple sensors and actuators, in-
cluding discovery, reading and actuation are lengthy and complex, even using REST-

i
i

“Book” — 2016/9/2 — 9:39 — page 19 — #19 i
i

i
i

i
i

Modeling RESTful WoT Services 19

ful concepts (see e.g. [23]). Secondly, the WoT also includes the control of actuators.
In the MDE world, it is common to model control algorithms by state machines; this
is claimed to bring considerable gains in productivity [10].

For the case of complex networks of resources, modeling concepts have been pro-
posed to describe the relations between sensors and actuators at a more high level, see
e.g. [41, 51]. We use common UML-based concepts to model WoT systems, and then
to generate RESTful APIs from these. In this way, we can describe systems at a higher
level of abstraction.

While there has been some effort to use higher-level models for RESTful APIs in
web applications, e.g. [60, 41, 51], these do not address the needs of IoT/WoT. Here,
we present UML models for typical patterns of WoT systems and show how to gen-
erate REST interfaces. In particular, we use composite relations in class diagrams to
describe physical relations of WoT devices, e.g. which sensor is in which room. This
is for instance used in the recent ZigBee Smart Energy standard [23], which provides
sophisticated REST interfaces for the discovery, access and recording of sensors and
actuators. Secondly, we use state machines to model the behavior of actuators. From
these models, we show how to generate rich RESTful interfaces for the discovery,
reading and manipulation of resources for the WoT.

In the following subsection, we provide background on REST architectural style.
Then, we introduce modeling concepts for WoT systems and show how REST inter-
faces can be generated from these.

6.1. Restful Design and Interfaces
In this section, we complement the description of the main ingredients of REST, pre-
sented in Section 2.1, with a high-level model of REST as in [27]. This is defined via a
tuple RS = (R, I, B, η,C,D,), where R is a set of resources. I is a set of resource iden-
tifiers. B ⊆ I is a finite set of root identifiers. η : I → R is a naming function, mapping
identifiers to resources, it is a partial function which is not defined for all elements. C
is a set of client identifiers and D is a set of data values, with an equivalence relation
∼⊆ (D × D). Note that REST permits several resource identifiers to point to the same
actual resource, thus we separate resources and resource identifiers.

Resources identifiers are modeled as URIs, represented as a set I, in the usual form.

URI = scheme ":" authority/path ["?"query]

Note that the authority part is optional, and also a possible fragment of the form
["#" fragment] can be added.

For the resource representation of a resource, we write (ids, d), where ids is a list
of linked resources and d is a data value. For simplicity, we write just ids or d if one
of these parts if empty or missing. This abstracts from typical resource representations
in HTML or XML form.

i
i

“Book” — 2016/9/2 — 9:39 — page 20 — #20 i
i

i
i

i
i

20 Modeling RESTful WoT Services - Concepts and Tools

We associate a partial function dere f : I 7→ 2ID with the state of the server; dere f (i),
if defined, is the current representation of the resource η(i) (which must be defined if
dere f (i) is defined).

A REST communication is of the form

op(i, args)/rc(rvals),

where op is a REST operation and rc denotes the return code with return values. We
use a simplified form of return codes, using OK and POSTED for successful execution,
and ERROR the non successful case. A communication sequence is a sequence of
communications carried out between a set of clients and the server.

We thus have the following operations as in [27]:
• GET (i)/OK(dere f (i)): The method returns the current entity (resource represen-

tation) of the resource identified by i from the server.
• DELET E(i)/OK: The method dissociates the resource identifier i on the server,

resulting in dere f (i) being undefined.
• PUT (i, (uris, d))/OK: The method associates a resource identified by i, if it is not

already associated, and assigns a value to its corresponding entity so that dere f (i) =

(uris, d). If this is a new association, then S (i) = {}.
• POS T (i, (uris, d))/CREAT ED(j): The method associates a fresh resource, which

is identified by j, and sets S (j) = {} and dere f (j) = (uris, d). The resource identi-
fied by j becomes a subordinate of the resource identified by i, and j is added to
S (i).

• POS T (i, d)/OK(): This provides a data item d to a data-handling process [14].
This is the second type of POST. It does not create a new (subordinate) resource.
We assume here it does not affect the linked resources. However, the state of some
resources may change, as discussed later.
The last item in the above list is a very common usage of POST, originally intended

for posting the content of HTML forms in HTTP requests. This is by many regarded
as a different kind of usage of POST and also not included in [27]. The main author
of the RESTful APIs is discussing this in a blog post, stating that a separate operation
would be more suitable9 and it is called “overloaded POST” in [48].

6.2. Modeling Restful Design and Interfaces
In this section, we show how to describe WoT systems with simple models and to gen-
erate REST interfaces. This will include hierarchically structured sensors and actua-
tors, but also associated entities like sensor readings. Clearly, REST has the ambition
to provide homogeneous and clean interfaces. We claim that we can give a more con-

9http://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/4732

http://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/4732

i
i

“Book” — 2016/9/2 — 9:39 — page 21 — #21 i
i

i
i

i
i

Modeling RESTful WoT Services 21

Munich, 2013-­07-­23IoT & S C. Prehofer1

Room Sensor

Controller

1..*

1..*

0..1

next

Figure 0.9 Class model for the WoT example.

cise and simpler way to describe sensors and actuators, and then show how to generate
RESTful interfaces from these models.

6.2.1. Resource Models for WoT
As a first step we discuss how to derive a resource model for WoT devices and the
corresponding discovery of resources. Consider the example shown in Figure 0.9.
The description of RESTful resources by a UML model is widely used, e.g. the OData
standard for RESTful Web APIs is using this [35]. Here, we focus on the IoT/WoT
specifics to model the physical relations of sensors and actuators.

The diagram shows a room with several sensors and controllers, e.g. for some
smart home which can be controlled based on sensor readings. The association with
the room class is a composition, which expresses that the sensors and controllers are
part of this room.

For the generation of a resource model, we need a root identifier, here assumed
to be /. As the class Room is the top element of composition relation, elements of
this class will be resources under the root identifier. The other classes will then be
immediate sub-resources based on the composition relation in the diagram. The other
relation, next, between instances of the class Room is not a composition and is just
modeled as an associated link, but not as a sub-resource. We need to assume that the
composition relation in the diagram constitutes a proper tree, such that we can build a
resource tree.

In a concrete example with several instances of the class diagram of Figure 0.9, the
URIs may be as depicted in Figure 0.10.

This example assumes two rooms with associated sensors and controllers. For
these URIs, we can derive the following REST operations to discover the resources
in an incremental way as expected for REST. Recall that RESTful design includes the
incremental, layered discovery of resources along the resource links. For instance, we
have the following operations (assuming the notation [e1, e1, . . .] for lists.)
• GET (/)/OK([/room1/, /room2/]):
• GET (/room1)/OK([/room1/sensor1, /room1/sensor2, /room1/controller1])

Other relations between classes, here the next link, can be done by some link model
in an object diagram. As an example, GET (/room1/next)/OK(/room2) returns the

i
i

“Book” — 2016/9/2 — 9:39 — page 22 — #22 i
i

i
i

i
i

22 Modeling RESTful WoT Services - Concepts and Tools

/

/room1

/room1/sensor1

/room1/sensor2

/room1/controller1

/room1/next

/room2

/room2/sensor1

/room2/next

Figure 0.10 Example URIs.

Reading

Munich, 2013-­07-­23IoT & S C. Prehofer2

Sensor Readings
0..1

timeStamp
value

fromSensor

0..*

Figure 0.11 Class model for WoT sensor readings.

next link of room1, which is assumed to be room2.
There is already existing work on modeling resources as a UML class model, e.g.

[41, 51]. The main difference here is that we use the hierarchical structure inherent in
our IoT/WoT application domain. Secondly, we specify not just the generic relation
on the class level, but also discuss how to specify the object level relationships.

6.2.2. Modeling Sensors and Sensor Readings
Based on the resource structure of Figure 0.9, we can now define the interfaces for
sensors. Clearly, the most obvious case is reading the sensor value, which is done by
a simple GET operation. For example, reading the room temperature from sensor1
may result in:

GET (/room1/sensor1)/OK(21C)
As discussed in Section 6.1, we abstract from the actual data value, which should

be in a self-descriptive XML or HTML format.
The next typical step for sensors is to create new resources for specific readings,

typically with a time stamp to record a specific reading and to make it available for
others. This is modeled in the UML class diagram in Figure 0.11, which shows a
relation between sensors and Reading resources which are linked via readings and
f romS ensor. Note that this is not a composition, as the readings may be located in
some other physical location. An example where this technique is used is the ZigBee
Smart Energy standard [23].

i
i

“Book” — 2016/9/2 — 9:39 — page 23 — #23 i
i

i
i

i
i

Modeling RESTful WoT Services 23

Based on this, we get the following RESTful operations to post and to discover the
readings, as well as to trace the readings back to the sensor.
• GET (/room1/sensor1)/ OK((room1/sensor1/readings, 21C))
• POS T (/room1/sensor1/readings, (21C, timeS tamp))

/CREAT ED(/room1/sensor1/readings/reading1)
• GET (/room1/sensor1/readings)

/OK([/room1/sensor1/readings/reading1, /room1/sensor1/readings/reading2])
• GET (/room1/sensor1/readings/reading1/ f romS ensor) /OK(/room1/sensor1/)
• GET (/room1/sensor1/readings/reading1/value)/ OK(21C)

Now, the GET operation on the sensor also returns a link to the readings. Note that
we have a choice here how to model the (sensor) readings resources. We model these
as sub-resources of the sensors in this example.

The second example adds a new reading. This will be inserted after the most recent
other reading. The third get operation yields the list of all readings. Then, the get
operation retrieves the associated sensor URI. Finally, the last get operation retrieves
the value of the reading.

Next we can also delete readings in the expected way.
• DELET E(/room1/sensor1/readings/reading1/)/ OK():
• DELET E(/room1/sensor1/readings/)/OK():

Note that second delete deletes all readings for this sensor. This is the usual se-
mantics of DELETE for a composite URL.

6.2.3. Modeling Actuators
The basic case of actuators is to model an actuator by a resource [8]. In this case,
we identify an actuator with a resource and use get and put to read and put values,
respectively.

For more complex actuators, we show in the following how sets of actuators can be
modeled by state machines. It is in fact a very common to model control algorithms
by state machines in other areas like embedded systems, see e.g. [10]. While such
state machines are often used for real-time control systems, we focus on control APIs
which can be used locally or over a network with generic APIs.

We show a simple example of two lights in Figure 0.12. Since the two actuators
are independent, their behavior is modeled in parallel state machines. The lights them-
selves are modeled as sub-resources of a room.

When the state machines are translated to RESTful APIs, it is important to dis-
cuss what is modeled as resources and what operations are used for triggering state
transitions. We assume here that the main objective of state machines is to abstract
from the internals of a sensor and to provide an interface to trigger the transitions.
These will cause internal state changes. First, it is generally accepted to use POST for
triggering state transitions, see e.g. [41]. This falls into the second case of POST for

i
i

“Book” — 2016/9/2 — 9:39 — page 24 — #24 i
i

i
i

i
i

24 Modeling RESTful WoT Services - Concepts and Tools

Munich, 2013-­07-­23IoT & S C. Prehofer3

Off On
switchOn

switchOff

controller1

Off On
switchOn

switchOff

controller2

exit

Figure 0.12 Actuator model for the WoT example.

invoking some processing on the server side, and does not create sub-resources on the
server. Note that PUT is not suitable for implementing transitions as transitions are
not idempotent.

Following this line, we choose to model transitions as subordinate resources, and
state as a property to the resource. GET can be used to retrieve the possible transitions
and the current state. Note that this violates the concept of hiding internals, but we
have included this for completeness. It appears now that PUT can be used to write the
state, yet this must be discouraged as the transitions are used to initiate actions and
also may have preconditions.

The following shows a few examples, assuming the two controllers of Figure 0.12
are in room1.
• GET (/room1/)/

OK([/room1/controller1, /room1/controller2])
• GET (/room1/controller1)/ OK(([switchO f f , switchOn], state = O f f))
• POS T (/room1/controller1/switchO f f /)/Error()
• POS T (/room1/controller1/switchOn/)/OK()

6.2.4. Modeling Services
Based on the defined REST APIs, we can build services. While there is ample ex-
perience how to use RESTful services, we show here that our modeling concepts can
also be used for services. As an example, consider a switch to handle all lights in one
composite resource, as shown in Figure 0.13. The state machine in this example ab-
stracts from the state machines in Figure 0.12 and offers simple operations to control
both lights. It uses actions on the transitions which trigger transitions in the actual
controller in Figure 0.13.

i
i

“Book” — 2016/9/2 — 9:39 — page 25 — #25 i
i

i
i

i
i

Modeling RESTful WoT Services 25

Munich, 2013-­07-­23IoT & S C. Prehofer4

Off On

switchOn / {POST(controller1/switchOn),
POST(controller2/switchOn) }

switchOff / {POST(controller1/switchOff),
POST(controller2/switchOff) }

Figure 0.13 Example service using the actuator model.

The RESTful APIs enable a number of services for WoT systems, in addition to
the basic functionality of reading and controlling sensors and actuators. First, we have
incremental discovery of resources via GET operations to retrieve the links to (subor-
dinate) resources. Secondly, we can search resources similar to web applications. For
instance, we can limit the result of a GET request to specific kinds of sensors. Simi-
larly, we could filter all lights which are on or off. For more details and other services
like lists or transactions we refer to [48, 55]

This is following the patterns of other web applications. In this way, we can achieve
consistent APIs, from the sensors and actuators in the WoT to cloud services.

7. Modeling WoT Systems with Generic RESTful Operations

While the graphical presentation of the components and the message flow in a mashup
tool is very attractive, it is also a limitation in itself. It essentially requires that the
components and connections are statically defined. This is clearly limiting in cases
where devices and services are connected dynamically. For instance, lights may be
added dynamically.

A further, related problem in the WoT is that we often have multiple, almost iden-
tical devices in one scenario. Consider for instance a building with several lights and
temperature sensors. With current mashup tools, all of these have to be modeled in an
explicit way. As all of these operate in the same way, it is desirable to abstract from
the individual device and just consider them as a set of components.

In this section, we present a novel concept for generic components which encapsu-
late a set of devices, for which we can define operations in a generic way. This generic
behavior is specified in terms of REST interfaces, which enable one to program in-
teractions with the components on a more abstract level. Similar to other generics
concepts, we can aggregate different kinds of resources as long as they understand the
same RESTful operations. Furthermore, we can also model dynamic sets of devices
based on RESTful filtering on resources. For instance, we can create a new set of lights
which have the property of being close to an emergency exit. Then, we can define an

i
i

“Book” — 2016/9/2 — 9:39 — page 26 — #26 i
i

i
i

i
i

26 Modeling RESTful WoT Services - Concepts and Tools

operation to turn on all of these lights.
There are also other approaches to lift programming of IoT devices to a more ab-

stract level. For example, [31] proposes a reasoning-based approach where user goals
are implemented based on suitable logic. Here, we focus on programming techniques,
which can be combined with such reasoning engines.

7.1. Generic Components by 1:n Relations
In the following, we propose a simple model for generic functions using generic com-
ponents. We aim to extend existing mashup concepts and employ concepts to generic
or polymorphic functions as in many programming languages.

The main idea is to define a 1 : n relation for components in mashup tools, which
generalizes the usual 1 : 1 relations. Based on this, the data flow can be modeled as
shown in Figure 0.14. The relation expresses that there are several light sub-resources
associated with each room. Similarly, each building has 1 to n Rooms.

Generic Mashup

Munich, 2013-07-23IoT & S C. Prehofer3

Rooms
Lights

/switchON
/switchOFF

1..*
Building

1..*

Figure 0.14 Generic components via 1:n relations.

Operationally, the idea is to conduct REST operations over all n sub-resources in a
generic way. As an example, we consider switching off all lights in a room room1. We
can thus just write a function using the generic version of POST, denoted as POS T ∗:

POST∗ (room1 / Ligh ts / switchOFF) [7 . 1 . 1]

The implementation will then send the POST operation to all elements in Lights.
Similarly, we can switch off all lights in all rooms in building1:

POST∗ (bu i ld ing1 / Rooms / Ligh ts / switchOFF) [7 . 1 . 2]

This will be translated into the following (schematic) code, ignoring error handling for
now.10

f o r room in GET (/ bui ld ing1 / Rooms) : [7 . 1 . 3]
for l i g h t in GET (/ bui ld ing1 / room / Ligh ts) :

POST (/ bui ld ing1 / room / l i g h t / switchOFF)

This is similar to polymorphic or generic programming. Since, however, we deal
here with distributed objects, failures cannot be easily ignored. There are different

10Note that we do not use multicast sending of GET messages, which is not possible for HTTP.

i
i

“Book” — 2016/9/2 — 9:39 — page 27 — #27 i
i

i
i

i
i

Modeling RESTful WoT Services 27

ways to handle failures. An obvious way is to handle failures locally, i.e. at each
instance. Another option is to record all error messages for a generic operation in a
separate aggregator object, to which a resource is added for each error that occurs, as
shown in Figure 0.15. This can be analyzed after the execution of a generic operation.

Generic Mashup

Munich, 2013-07-23IoT & S C. Prehofer4

Rooms
Lights

/switchON
/switchOFF

1..*
Building

1..*

ErrorList

(light1, Error(x),
light5, Error(x5)

...)

Figure 0.15 Generic programming and error handling.

By using and extending RESTful concepts, we can integrate this approach in a
more consistent and coherent way into mashup tools. First, we use the sub-resource
concept to aggregate objects. Secondly, we use the concept of polymorphism via
generic resources. In example 7.1.1, all light resources in room1 have to offer the
operation switchO f f . As the lights are sub-resources, we can build the URIs for
the operations by appending the resource name as in example 7.1.3. This means to
perform a generic operation over linked data structures of sub-resources.

One limitation of this approach is that each of the generic operations is executed
individually. An example is to calculate the energy consumption of all devices in one
room. Here, we could devise generic code like

SUM(GET∗ (room1 / Ligh ts / currentEnergy)) [7 . 1 . 4]

In this example, we assume GET ∗ returns a list, which is added up by S UM. Assum-
ing functional languages like Haskell, one could also construct more complex opera-
tions [25]. For instance, we may want to calculate the total energy consumption and at
the same time count the number of traversed resources. However, for more complex
operations without such language support, we have to resort to a more explicit model,
which is discussed in Section 7.2.

A similar concept of multicasting of REST requests is possible with CoAP multi-
casting [52]. However, this is designed only for requests without confirmation. As no
errors or confirmations can occur, this case is easy to handle by just multicasting the
request to a set of destinations. In such a case, we could of course map the construct
of example 7.1.4 to such a CoAP multicast request.

i
i

“Book” — 2016/9/2 — 9:39 — page 28 — #28 i
i

i
i

i
i

28 Modeling RESTful WoT Services - Concepts and Tools

7.2. Generic Operations via Sub-Resources
In addition to executing functions on each device separately, there is also a need for
functionality that is aware of a set of (sub-) resources. Consider, for example, rooms
which have heaters and temperature sensors. In order to control the heaters, we iterate
over the sensors and switch off the corresponding heater if the temperature is above
25◦ C. This is shown, with simplified code, in Figure 0.16. Note that we explicitly use
the sub-resources for modeling operations on a set of sub-resources.

This could also be done by the approach described in Section 7.1, but would require
considerable more complex programming concepts (e.g. based on function parame-
ters).

Generic Components by Sub-Resources

Munich, 2013-07-23IoT & S C. Prehofer5

Rooms TemperatureSensors
1..*

1..*

Building
1..*

Heaters

/switchON
/switchOFF

/temperature
Switch(GET(TemperatureSensor))

OK (sensors):
for each s in sensors

total += GET(/building/room/s/temperature)
Return total / sensors.count

Error(e):
....

Figure 0.16 Generic programming with explicit sub-resources.

The main advantage is that we use an explicit notation with the “1:n” link to repre-
sent the link between the iterator and the set of objects. Thus, the resources relations
are very explicit, and we argue that this fit better into the original concepts of mashup
tools. Overall, it is more flexible and extensible compared to the multicast option. An-
other extension is to use a flexible generation of such components based on filtering,
as shown in Section 7.3.

7.3. Managing Generic Components
In this section, we discuss how resources in generic components can be managed. For
instance, in the building example, we may want to add or remove sensors in a room.
The approach here is to have a separate RoomManager component which is in charge
of such updates, as shown in Figure 0.17.

In terms of a RESTful implementation, we can use sub-resources to manage a set
of resources in a generic component. For instance, in the building example, we can
model the sensors and controllers as a sub-resources of a room. Then, we can use

i
i

“Book” — 2016/9/2 — 9:39 — page 29 — #29 i
i

i
i

i
i

Modeling RESTful WoT Services 29
Dynamic Management of Components
„Generic“ component represents „n“ rooms

Munich, 2013-07-23IoT & S C. Prehofer6

Rooms Sensors

Controllers

1..*

1..*

Building
1..*

Room Manager

AddSensor
RemoveSensor
AddController
...

Figure 0.17 Managing generic components.

POST and DELETE to manage these.
Furthermore, we can also create sets of devices based on RESTful filtering on

resources, as in usual search queries. This can be implemented with the query option
of an URL, as defined in Section 6.1. In the building example, we may create a set of
lights with specific properties. For instance, we can create a new set of lights which
have the property of being close to an emergency exit by filtering based appropriate
parameters in the resources.

One issue that REST does not fully address is consistency in case of multiple si-
multaneous operations. For instance, a generic operation on a component may be
carried out by several REST operations. Then, consider that a sensor is added while
this generic operation is on the way. To ensure consistency, we need to ensure that
generic operations are completed before such updates. While REST does not directly
support this, we should note that REST does not require that DELETE operations are
executed immediately, even if the OK return code has been sent. According to [14], it
is sufficient that the server intends to delete the resource. Hence, in such cases, we can
wait for other, complex operations to conclude before deleting.

8. Conclusions

The goal of the chapter was to review tools and methodologies for the development
of applications for the Web of Things (WoT), as well as to propose new tool con-
cepts. We have reviewed the main concepts and selected tools in the area of Internet of
Things mashups, which focus on modeling data flow as well as easy data integration.
Furthermore, mashup tools are mainly cloud based and some tools also offer device
management as well as component marketplaces. Thus, these tools aim at rapid ser-
vice creation which simple concepts, tailored for the Internet of Things. On the other
hand, model-driven engineering (MDE) approaches permit different views and more

i
i

“Book” — 2016/9/2 — 9:39 — page 30 — #30 i
i

i
i

i
i

30 REFERENCES

expressive modeling concepts. We have analyzed both concepts and techniques re-
garding expressiveness, suitability for the problem domain as well as ease of use and
scalability.

As one particular case, we show how mashup tools can be extended to more flexi-
ble, generic operations on sets of things, based on advanced modeling concepts. This
includes design and code generation in the specification of the REST APIs of resources
offered by WoT sensors and actuators, as well as the specification of control flow of
the individual actuators.

This shows that mashup concepts can benefit from MDE approaches, but one has
to carefully balance the added expressiveness with the ease of use. Thus, we believe
that there is potential in improving WoT development by combining mashup tools with
MDE tools and methods.

Acknowledgments
The authors are grateful to Tanmaya Mahapatra, who very actively contributed to this work. Furthermore,
we would like acknowledge the input from Dominik Schinner and Luca Chiarabini to earlier publications
on this topic.

References
1. Atzori, L., Iera, A. and Morabito, G. [2010], ‘The internet of things: A survey’, Computer Networks

54(15), 2787 – 2805.
URL: http://www.sciencedirect.com/science/article/pii/S1389128610001568

2. Balasubramanian, D., Levendovszky, T., Dubey, A. and Karsai, G. [2014], Taming Multi-Paradigm
Integration in a Software Architecture Description Language, in ‘Proceedings of MPM 2014, Valen-
cia, Spain’, pp. 67–76.

3. Berry, G. [2007], SCADE: Synchronous design and validation of embedded control software, in
‘Proceedings of GM R&D Workshop, Bangalore, India’, Springer, pp. 19–33.

4. Blackstock, M. and Lea, R. [2012a], IoT mashups with the WoTKit, in ‘Internet of Things (IOT),
2012 3rd International Conference on the’, pp. 159–166.

5. Blackstock, M. and Lea, R. [2012b], Iot mashups with the WoTKit, in ‘Internet of Things (IOT),
2012 3rd International Conference on the’, IEEE, pp. 159–166.

6. Blackstock, M. and Lea, R. [2012c], Wotkit: A lightweight toolkit for the web of things, in ‘Proceed-
ings of the Third International Workshop on the Web of Things’, WOT ’12, ACM, New York, NY,
USA, pp. 3:1–3:6.
URL: http://doi.acm.org/10.1145/2379756.2379759

7. Blair, G., Bencomo, N. and France, R. [2009], ‘Models@ run.time’, Computer 42(10), 22–27.
8. Bormann, C., Castellani, A. P. and Shelby, Z. [2012], ‘CoAP: An application protocol for billions of

tiny internet nodes’, IEEE Internet Computing (2), 62–67.
9. Broy, M., Crane, M. L., Dingel, J., Hartman, A., Rumpe, B. and Selic, B. [2006], 2nd UML 2 Seman-

tics Symposium: Formal Semantics for UML, in T. Khne, ed., ‘Models in Software Engineering’,
number 4364 in ‘Lecture Notes in Computer Science’, Springer Berlin Heidelberg, pp. 318–323.
DOI: 10.1007/978-3-540-69489-2 39.

10. Broy, M., Kirstan, S., Krcmar, H., Schätz, B. and Zimmermann, J. [2013], ‘What is the benefit of
a model-based design of embedded software systems in the car industry?’, Software Design and
Development: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools,

i
i

“Book” — 2016/9/2 — 9:39 — page 31 — #31 i
i

i
i

i
i

REFERENCES 31

and Applications p. 310.
11. Cirani, S., Picone, M., Gonizzi, P., Veltri, L. and Ferrari, G. [2015], ‘Iot-oas: An oauth-based autho-

rization service architecture for secure services in iot scenarios’, IEEE Sensors Journal 15(2), 1224–
1234.

12. Daniel, F. and Matera, M. [2014], Mashups: Concepts, Models and Architectures, Springer Berlin
Heidelberg, Berlin, Heidelberg.

13. Derhamy, H., Eliasson, J., Delsing, J. and Priller, P. [2015], A survey of commercial frameworks for
the internet of things, in ‘2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA)’, pp. 1–8.

14. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T. [1999],
Hypertext transfer protocol–http/1.1, Technical report.

15. Fielding, R. T. and Taylor, R. N. [2002], ‘Principled design of the modern web architecture’, ACM
Transactions on Internet Technology (TOIT) 2(2), 115–150.

16. Fleurey, F., Morin, B., Solberg, A. and Barais, O. [2011], MDE to Manage Communications with and
between Resource-Constrained Systems, in J. Whittle, T. Clark and T. Khne, eds, ‘Model Driven En-
gineering Languages and Systems’, number 6981 in ‘Lecture Notes in Computer Science’, Springer
Berlin Heidelberg, pp. 349–363. DOI: 10.1007/978-3-642-24485-8 25.

17. Foundational Subset For Executable UML Models (FUML) [2016],
http://www.omg.org/spec/FUML/Current.

18. Giusto, D., Iera, A., Morabito, G. and Atzori, L., eds [2010], The Internet of Things, Springer New
York, New York, NY.

19. Guinard, D., Trifa, V., Mattern, F. and Wilde, E. [2011], From the internet of things to the web of
things: Resource-oriented architecture and best practices, in ‘Architecting the Internet of Things’,
Springer, pp. 97–129.

20. Guinard, D., Trifa, V. and Wilde, E. [2010], A resource oriented architecture for the Web of Things,
in ‘Internet of Things (IOT), 2010’, pp. 1–8.

21. Harel, D. [1987], ‘Statecharts: A Visual Formalism for Complex Systems’, Sci. Comput. Program.
8(3), 231–274.

22. Health, N. [2014], ‘How ibm’s node-red is hacking together the internet of things’. TechRepublic.com
[Online; posted 13-March-2014].

23. Hersent, O., Boswarthick, D. and Elloumi, O. [2012], ‘Zigbee smart energy 2.0’, The Internet of
Things: Key Applications and Protocols pp. 209–236.

24. Hoyer, V. and Fischer, M. [2008], Market overview of enterprise mashup tools, in ‘Service-Oriented
Computing–ICSOC 2008’, Springer, pp. 708–721.

25. Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzmán, M. M., Hammond,
K., Hughes, J., Johnsson, T. et al. [1992], ‘Report on the programming language haskell: a non-strict,
purely functional language version 1.2’, ACM SigPlan notices 27(5), 1–164.

26. IBM Node-RED, A visual tool for wiring the Internet of things [n.d.].
URL: http://nodered.org/

27. Klein, U. and Namjoshi, K. S. [2011], Formalization and automated verification of RESTful be-
havior, in ‘Formalization and automated verification of RESTful behavior’, Vol. Computer Aided
Verification, Springer, pp. 541–556.

28. Kleinfeld, R., Steglich, S., Radziwonowicz, L. and Doukas, C. [2014], glue.things: A Mashup Plat-
form for wiring the Internet of Things with the Internet of Services, in ‘Proceedings of the 5th Inter-
national Workshop on Web of Things’, WoT ’14, ACM, New York, NY, USA, pp. 16–21.
URL: http://doi.acm.org/10.1145/2684432.2684436

29. Ma, D. [2009], Offering rss feeds: Does it help to gain competitive advantage?, in ‘System Sciences,
2009. HICSS ’09. 42nd Hawaii International Conference on’, pp. 1–10.

30. Maximilien, E. M., Wilkinson, H., Desai, N. and Tai, S. [2007], A domain-specific language for web
apis and services mashups, Springer.

31. Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R. and Mattern, F. [2014], Configuration of smart
environments made simple: Combining visual modeling with semantic metadata and reasoning, in
‘Internet of Things (IOT), 2014 International Conference on the’.

http://www.techrepublic.com/article/node-red/

i
i

“Book” — 2016/9/2 — 9:39 — page 32 — #32 i
i

i
i

i
i

32 REFERENCES

32. Mernik, M., Heering, J. and Sloane, A. M. [2005], ‘When and How to Develop Domain-specific
Languages’, ACM Comput. Surv. 37(4), 316–344.
URL: http://doi.acm.org/10.1145/1118890.1118892

33. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F. and Solberg, A. [2009], ‘Models@ Run.time to
Support Dynamic Adaptation’, Computer 42(10), 44–51.

34. Myllrniemi, V., Prehofer, C., Raatikainen, M., Gurp, J. v. and Mnnist, T. [2008], Approach for
Dynamically Composing Decentralised Service Architectures with Cross-Cutting Constraints, in
R. Morrison, D. Balasubramaniam and K. Falkner, eds, ‘Software Architecture’, number 5292 in
‘Lecture Notes in Computer Science’, Springer Berlin Heidelberg, pp. 180–195. DOI: 10.1007/978-
3-540-88030-1 14.

35. OData Version 4.0 [2015].
URL: http://www.odata.org/documentation/

36. OMG [2007], OMG Unified Modeling Language TM (OMG UML Version 2.5), Technical Report
formal/2015-03-01.
URL: http://www.omg.org/spec/UML/2.5

37. Pautasso, C., Zimmermann, O. and Leymann, F. [2008], Restful web services vs. bigweb services:
making the right architectural decision, in ‘Restful web services vs. bigweb services: making the
right architectural decision’, Vol. Proceedings of the 17th international conference on World Wide
Web, ACM, pp. 805–814.

38. Peltz, C. [2003], ‘Web services orchestration and choreography’, Computer 36(10), 46–52.
39. Pintus, A., Carboni, D. and Piras, A. [2012a], Paraimpu: a platform for a social web of things, in

‘Proceedings of the 21st international conference companion on World Wide Web’, ACM, pp. 401–
404.

40. Pintus, A., Carboni, D. and Piras, A. [2012b], Paraimpu: A platform for a social web of things, in
‘Proceedings of the 21st International Conference on World Wide Web’, WWW ’12 Companion,
ACM, New York, NY, USA, pp. 401–404.
URL: http://doi.acm.org/10.1145/2187980.2188059

41. Porres, I. and Rauf, I. [2011], Modeling behavioral RESTful web service interfaces in UML, in
‘Modeling behavioral RESTful web service interfaces in UML’, Vol. Proceedings of the 2011 ACM
Symposium on Applied Computing, ACM, pp. 1598–1605.

42. Pramudianto, F., Kamienski, C. A., Souto, E., Borelli, F., Gomes, L. L., Sadok, D. and Jarke, M.
[2014], IoT Link: An Internet of Things Prototyping Toolkit, in ‘Ubiquitous Intelligence and Com-
puting, 2014 IEEE 11th Intl Conf on and IEEE 11th Intl Conf on and Autonomic and Trusted Com-
puting, and IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated
Workshops (UTC-ATC-ScalCom)’, pp. 1–9.

43. Prehofer, C. [2013], From the Internet of Things to Trusted Apps for Things, in ‘Green Comput-
ing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE
International Conference on and IEEE Cyber, Physical and Social Computing’, pp. 2037–2042.

44. Prehofer, C. [2015], Models at REST or modelling RESTful interfaces for the Internet of Things, in
‘Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on’, IEEE, pp. 251–255.

45. Prehofer, C. and Chiarabini, L. [2015], From Internet of Things Mashups to Model-Based Develop-
ment, in ‘Computer Software and Applications Conference (COMPSAC), 2015 IEEE 39th Annual’,
IEEE, pp. 499 – 504.

46. Prehofer, C., Gurp, J. v., Stirbu, V., Satish, S., Tarkoma, S., Flora, C. d. and Liimatainen, P. P. [2010],
‘Practical Web-Based Smart Spaces’, IEEE Pervasive Computing 9(3), 72–80.

47. Prehofer, C. and Schinner, D. [2015], Generic Operations on RESTful Resources in Mashup Tools,
ACM Press, pp. 1–6.
URL: http://dl.acm.org/citation.cfm?doid=2834791.2834795

48. Richardson, L., Amundsen, M. and Ruby, S. [2013], RESTful Web APIs, O’Reilly Media, Inc.
49. Riedel, T., Yordanov, D., Fantana, N., Scholz, M. and Decker, C. [2010], A Model Driven Internet of

Things, in ‘Networked Sensing Systems (INSS), 2010 Seventh International Conference on’, IEEE,
pp. 265–268.

50. Ryman, A. [2001], Simple object access protocol (soap) and web services, in ‘Proceedings of the 23rd

i
i

“Book” — 2016/9/2 — 9:39 — page 33 — #33 i
i

i
i

i
i

REFERENCES 33

International Conference on Software Engineering’, ICSE ’01, IEEE Computer Society, Washington,
DC, USA, pp. 689–.
URL: http://dl.acm.org/citation.cfm?id=381473.381580

51. Schreier, S. [2011], Modeling restful applications, in ‘Modeling restful applications’, Vol. Proceed-
ings of the second international workshop on restful design, ACM, pp. 15–21.

52. Shelby, Z., Hartke, K. and Bormann, C. [2014], ‘Frc 7251, the constrained application protocol
(coap)’, https://tools.ietf.org/html/rfc7252.

53. Straeten, R. V. D., Mens, T. and Baelen, S. V. [2008], Challenges in Model-Driven Software Engineer-
ing, in M. R. V. Chaudron, ed., ‘Models in Software Engineering’, number 5421 in ‘Lecture Notes in
Computer Science’, Springer Berlin Heidelberg, pp. 35–47. DOI: 10.1007/978-3-642-01648-6 4.

54. Thangavel, D., Ma, X., Valera, A., Tan, H. X. and Tan, C. K. Y. [2014], Performance evaluation of
mqtt and coap via a common middleware, in ‘Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2014 IEEE Ninth International Conference on’, pp. 1–6.

55. Tilkov, S. [2009], ‘Rest und http’, Einsatz der Architektur des Web für Integrationsszenarien, dpunkt.
verlag .

56. Wagelaa, D. [2008], Challenges in bootstrapping a model-driven way of software development, in
‘First International Workshop on Challenges in Model-Driven Software Engineering (ChaMDE 2008)
, held in conjunction with MoDELS 2008’.

57. Wang, J., Xu, Z. and Zhang, J. [2015], Implementation strategies for csv fragment retrieval over http,
in ‘2015 12th Web Information System and Application Conference (WISA)’, pp. 223–228.

58. Wong, J. and Hong, J. I. [2007], Making mashups with marmite: towards end-user programming for
the web, in ‘Proceedings of the SIGCHI conference on Human factors in computing systems’, ACM,
pp. 1435–1444.

59. Yu, J., Benatallah, B., Casati, F. and Daniel, F. [2008], ‘Understanding mashup development’, Inter-
net Computing, IEEE 12(5), 44–52.

60. Zuzak, I., Budiselic, I. and Delac, G. [2011], Formal modeling of RESTful systems using finite-state
machines, in ‘Web Engineering’, Springer, pp. 346–360.

	Chapter Title
	Introduction
	Background
	RESTful design
	Mashups and Mashup tools

	State of the Art in Mashup Tools
	Node-RED
	glue.things
	WoTKit
	Other Prominent IoT/WoT Tools
	Features and Limitations

	Model-Driven Engineering for WoT
	Comparing Mashup and Model-Driven Engineering Approaches
	Execution and Modeling
	Expressiveness and Reflecting the Problem-Domain
	Tool Support and Ease of Use
	Scalability and Runtime Adaptation
	Summary

	Modeling of RESTful Services
	Restful Design and Interfaces
	Modeling Restful Design and Interfaces
	Resource Models for WoT
	Modeling Sensors and Sensor Readings
	Modeling Actuators
	Modeling Services

	Modeling WoT Systems with Generic RESTful Operations
	Generic Components by 1:n Relations
	Generic Operations via Sub-Resources
	Managing Generic Components

	Conclusions

